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Abstract

One of the options for increasing the longitudinal coherency of the X-ray FELs is
creating the electron beam bunching at the X-ray wavelength scale. Several
schemes, such as HGHG, EEHG, transverse beam masking before the Emittance
Exchanger (EEX), leading to significant amplitude of the beam microbunching
were recently proposed. All these scheme rely on the beam optics which include
several magnetic dipoles. While the beam passes through the dipole, its energy
spread increases due to quantum nature of synchrotron radiation. As a result, the
bunching factor at small wavelengths reduces since electrons having different
energies follow different trajectories in the bend. We study general concept of the
electron beam masking and determine the beam optics which transforms the
induced beam modulation into the longitudinal bunching. We rigorously
calculate the reduction in the bunching factor due to incoherent synchrotron
radiation (ISR) while the beam travels through the beam optics. We demonstrate
that the bunching smearing in chicanes is much larger than the bunching
smearing in the EEX consisting of the same bends. We determine parameters of
the EEX optics which result in the smallest decrease of the electron bunching due
to ISR-induced energy diffusion.
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Seeding schemes

FEL mode couples electron bunching and radiation. Therefore, FEL can be seeded
either by the coherent radiation or by beam bunching at the resonant wavelength.
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Mechanism for bunching degradation

Electron radiated power

Electrons emit photons in quanta which
frequency (and quanta energy) strongly
depends on the angle of photon emission
due to Doppler shift.
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Two electrons with close 6D position in
the phase space may end up at different
positions after passing the bend. As a
result, bunching degrades.




Qualitative estimate

Energy diffusion due to quantum nature of
incoherent synchrotron radiation
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Electrons having different energies travel different distance in the bend
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Viasov Equation

Viasov equation in Beam Physics conventional Viasov equation in Plasma Physics
d }_é - Electron coordinates in 6D phase a y f + ‘_} . Vf + F. 8 ~ f =(
- = P( S) R space change linearly under linear P

d S forces applied
dt_dx,-_dpl- N )_é—]_; ﬁ—ﬁ
differential transform matrix 1 Vi Fl .
Newton equation

formal solution

) S ) R(s)= M (s, = $)R(s,)
R(s) = eXPLJ‘P(S')dS'}R(SO) < M(SO N s) _ exp[j.P(S')dS') Example: bend

dipole

So

conventional transform matrix 0 p 0000
-1/p 0 0 0 0 1
0 00 p 00O
PBe;d =
0 000 00O
| 000 00O
constructing Vlasov equation 0 0000 0
atf + V . ka — O R = V cosa psina 0 0 0 p(l-cosa)
—sina/p cosa 0O 0 0 sin
a 0 0 I pa O 0
M _ [Pda
Berzd(a) e 0 O 0 1 0 O
n _ —-sina  —p(l-cosa) 0 0 1 —p(a-sina)
8Sf+V§f PR=0 0 0 0 0 0 1




Transform of beam modulation

0.f+V.f-PR=0

Vlasov equation can be formally solved
by tracing back the position of each
electron

f(R,5) = fo(M (s, = 5)R,5,)

beam optics final distribution

1.e. phase space density does not change initial distribution

along the trajectory (Liouville theorem)

beam optics
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Speculative math

Transform matrix for the wavevector should depend on
the beam transform matrix. It can include simple matrix
operations like self matrix, inversion, and transposition
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In a beamline consisting of two consecutive elements
both the transform matrix for electron position and
modulation wavenumber should be a product of
individual transform matrices
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lllustration of modulation transform
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Beam envelope and modulation
wavevector transform differently.
The beamline should be designed
carefully to track evolution of both
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Advantages of description

initial state
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The problem generating a bunched beam with given envelope can be split into two problems:
1. One needs to determine the beamline which recovers required beam modulations
2. Placing additional beam transport upstream from the modulator section provides control over

the resulting beam envelope
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Examples of nonoptimal optics
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Fokker-Planck Equation

Quantum nature of incoherent synchrotron radiation results
in the energy diffusion for electrons
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Energy diffusion affects the envelope evolution much smaller than the evolution of modulation
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Symmetric beamline

Formal solution of Fokker-Planck equation
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Example: chicane
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Calculating modulation smearing in beamline
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Algorithm for calculating bunching degradation

1.
2.
3.

Calculate the required bunching wavenumber at the beginning of optics k, =MTkg;
Calculate the modulation wavenumber at each dipole entrance or exit;
Calculate the modulation wavenumber at each point inside the dipole knowing the

modulation wavenumber at its edge;

Integrate attenuation of modulation knowing k. inside the dipole, dA/ds=-Dk?,.-A;

. Repeat steps 3-4 for each dipole;
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Electron bunching through Emittance Exchanger (EEX)
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Negative drift space

Initial wavenumber of modulaion &, = Mk, =[0,k..,0,0] f=d, f=d, f;=d,
can be created from x-modulation by placing additional
drift+lens optics before the EEX
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Comparison of bunching smearing in different beamlines
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Numerical verification

Cavity
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1. Generate initial ensemble of electrons with transverse
density modulation;

2. Push particles through beamline elements using linear
beam matrix for each element;

3. Push particles inside each bend in several steps adding
random energy change on each step;
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Consistency of continuous description

Central limit theorem

Each electron emits photons with about 100% distribution in photon
energy. Central limit theorem states that if # of photon is large, electron
energy approaches Gaussian statistics, i.e. electron dynamics can be
described with diffusion equation.

Berry-Esseen theorem estimates how fast the distribution function
approaches Gaussian
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Results

* Formalism describing the evolution of the monochromatic beam modulations in the beamline is
developed.

* Rigorous formalism describing smearing of the beam modulations due ISR-induced energy spread is

developed. Straightforward algorithm for calculating the smearing effect in an arbitrary beamline is
described.

* It is demonstrated that the beam bunching degradation is caused by the beamline dispersion in case of
symmetric beamline.

* Smearing out of beam modulation in chicane and EEX is calculated. It is demonstrated that bunching
degradation in chicane is much stronger than in EEX since chicane has nonzero dispersion.

*Analytical results are verified numerically.
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